
International Journal of Heat and Mass Transfer 47 (2004) 3003–3015

www.elsevier.com/locate/ijhmt
Effect of viscous dissipation on the optimization
of the heat transfer in internally finned tubes

Giampietro Fabbri *

Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Universit�a degli studi di Bologna,

Viale Risorgimento 2, 40136 Bologna, Italy

Received 18 July 2003; received in revised form 5 March 2004
Abstract

In the present work the effect of viscous dissipation on the heat transfer in a finned tube cooled by a fluid in laminar

flow is studied under the condition of imposed heat flux. In particular, the alterations induced by viscous dissipation in

the optimum finned tube geometries are investigated. To this aim, the velocity and temperature distributions on the

finned tube cross-section are determined with the help of a finite element model which takes the effect of viscous dis-

sipation into account. Moreover, a global heat transfer coefficient is calculated. After having assigned a polynomial

lateral profile to the fins of the tube, the geometry is then optimized in order to maximize the heat transferred per unit of

tube length for a given weight and for a given hydraulic resistance in correspondence with different intensities of viscous

dissipation. Lastly, the differences between the optimum geometries obtained under different conditions of viscous

dissipation are analyzed.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In many practical applications the effect of viscous

dissipation on the laminar forced convection cannot be

neglected. This occurs for example when the dimension

of the duct is small or the viscosity of the fluid is high.

Compact heat exchangers often are used under these

conditions. In fact, to make such devices more and more

compact, the fluids are forced to flow inside very small

channels. Moreover, to remove the heat from certain

motors, the lubricating fluid, which is strongly viscous, is

also cooled through a compact heat exchanger, as in

case of motor vehicles.

One of the earliest study on the effect of viscous

dissipation on laminar forced convection was carried out

by Brinkman, who investigated the heat transfer in

capillary ducts under both the boundary condition of

imposed wall temperature and insulated duct wall [1].
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Afterwards, many authors investigated the effect of

viscous dissipation on laminar forced convection under

different geometrical, physical, and boundary conditions

[2–12]. Tyagi [2] studied the effect of viscous dissipation

on the heat transfer in the fully developed velocity and

temperature profile region of arbitrary cross-section

tubes under the condition of uniform wall temperature.

The viscous dissipation in the entrance region was ana-

lyzed by Ou and Cheng [3,4] under both the condition of

temperature or heat flux uniformly imposed on the tube

wall. The effects of viscous dissipation under condition

of uniform temperature or heat flux were also compared

by Basu and Roy [6]. In general, it has been observed

that viscous dissipation is more effective when changes in

the fluid velocity on the duct cross-section are high.

Moreover, in case of fully developed laminar convection

and imposed heat flux on the duct wall, viscous dissi-

pation results in a reduction of the Nusselt number.

In a previous work [13], we studied the problem of

optimizing the heat transfer in an internally finned

cylindrical tube by varying the fin shape under the

conditions of laminar flow and imposed heat flux on the

tube wall. As in most of the studies on the laminar
ed.
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Nomenclature

a height of the fins (m)

Bre equivalent Brinkman number

cp specific heat capacity of the coolant (J/kgK)

f fin profile angle as a function of r (rad)
E surface averaging matrix (m2)

eij elements of the surface averaging matrix E
(m2)

h global heat transfer coefficient (W/m2 K)

kc thermal conductivity of the coolant (W/

mK)

n polynomial order

Nue equivalent Nusselt number

p generalized pressure (N/m2)

q00 heat flux per unit of surface (W/m2)

r radial coordinate (m)

ri radial coordinate of the ith node (m)

R internal radius (m)

S vector containing the total area of the four

subelements surrounding each node (m2)

Sp area of the studied portion of the tube cross-

section (m2)

s unfinned wall thickness (m)

T vector containing the temperature of each

node (K)

Tb bulk temperature of the coolant (K)

t temperature in the solid and in the fluid on

the tube cross-section (K)

ti temperature of the ith node (K)

Tmax maximum temperature on the external

surface (K)

U vector containing the coolant velocity of

each node (m/s)

u coolant velocity (m/s)

u average coolant velocity (m/s)

ui coolant velocity of the ith node (m/s)

z longitudinal coordinate (m)

Greek symbols

a normalized height of the fins

b angle between two symmetry axes (rad)

c ratio between finned tube and coolant ther-

mal conductivity

D vector containing the values of the viscous

dissipation function in each node (Pa/s)

d viscous dissipation function (Pa/s)

di viscous dissipation function in the ith node

(Pa/s)

1 normalized hydraulic resistance

g normalized radial coordinate

h angular coordinate (rad)

hi angular coordinate of the ith node (rad)

l dynamic viscosity (Pa s)

n normalized area of the fin cross-section

q coolant density (kg/m3)

r normalized unfinned wall thickness

r normalized average wall thickness

/ fin profile angle as a function of g (rad)

/i fin profile describing parameters

wi polynomial coefficients
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convection in finned cylindrical tubes, the effect of vis-

cous dissipation was neglected. However, the results

obtained in our previous study demonstrated that it is

possible to noticeably improve the heat transfer effec-

tiveness of finned cylindrical tubes by assigning to the

fins a wavy profile. Moreover, the improvements ob-

served in the heat transfer are caused by higher velocity

gradients which induce higher temperature gradients

and heat fluxes near the surface of the fins [13]. There-

fore, such improvements are expected to be reduced by

the effect of viscous dissipation.

In the present work we then study the problem of

optimizing the geometry of internally finned cylindrical

tubes by taking viscous dissipation into consideration.

In particular, the heat transfer in an internally finned

tube is investigated under the condition of laminar

coolant flow, fully developed velocity and temperature

profiles, and imposed heat flux on the tube wall (as in

counter-current flow heat exchangers). To this aim, a

mathematical model is proposed, which considers the

thermal phenomena induced by changes in the fin profile
as well as viscous dissipation. Moreover, an opportune

genetic algorithm [14–17] is utilized in order to find the

optimum fin shape under different conditions of viscous

dissipation.
2. The finned tube model

Let us consider a tube with internal fins, which are

identical and have an axial symmetrical cross-section

(Fig. 1a). A heat flux q00, is uniformly imposed on the

external surface. Moreover, a coolant passes through the

tube in laminar flow.

As in the case viscous dissipation is negligible [13],

the heat transfer performances of the system can be

determined by studing a portion of it delimited by two

symmetry axes (Fig. 1b). Let us choose a cylindrical

coordinate system with the z-axis directed as the coolant

flow. Let a be the fin height in the radial direction and

f ðrÞ an arbitrary function of the radial coordinate r
which provides the value of the angular coordinate h on
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Fig. 1. Finned tube geometry: cross-section (a), subdivision of

a portion of the cross-section in finite elements (b).
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the lateral fin profile. Moreover, let R be the internal

radius, s the unfinned tube wall thickness and b the angle

between the symmetry axes.

Let us introduce the following hypotheses:

1. the system is in steady state,

2. velocity and temperature profiles are completely

developed,

3. fluid properties are uniform,

4. natural convection is negligible in regard to the

forced one,

5. viscous dissipation is not negligible.

These hypotheses can be assumed, for example, for a

heat exchanger working continuously or for long peri-

ods, having tubes whose length is significantly large with

respect to the radius, transferring heat fluxes which are

not so high to create very large changes in the temper-

ature on the cross-section, and supplied by a fluid

flowing at a moderate-high velocity.

The coolant flow is then described by the following

equation [18]:

1

r
o

or
r
ou
or

� �
þ 1

r2
o2u

oh2
¼ 1

l
dp
dz

ð1Þ

l being the dynamic viscosity and p a generalized pres-

sure, which includes the gravitation potential. Eq. (1)
must be integrated by imposing the following boundary

conditions:

1. on the contact surfaces with the solid the velocity is

zero,

2. on the symmetry axes and center the partial deriva-

tive of the velocity in the normal direction is zero.

The temperature distribution in the coolant is described

by the following equation [18]:

qcpu
ot
oz

¼ kc
1

r
o

or
r
ot
or

� ��
þ 1

r2
o2t

oh2

�
þ dðr; hÞ ð2Þ

q being the density, cp the specific heat, and kc the

thermal conductivity of the coolant, and d a viscous

dissipation function:

dðr; hÞ ¼ l
ou
or

� �2
"

þ 1

r2
o2u

oh2

� �2
#

ð3Þ

The temperature distribution in the finned tube is in-

stead described by Laplace’s equation:

1

r
o

or
r
ot
or

� �
þ 1

r2
o2t

oh2
¼ 0 ð4Þ

Eqs. (2) and (4) must be integrated by imposing the

following boundary conditions:

1. on the contact surface, the temperature is the same in

the solid and in the fluid;

2. on the contact surface, the heat flux in the normal

direction is the same in the solid and in the fluid;

3. on the symmetry axes and center, the heat fluxes in

the normal direction are zero;

4. on the external tube surface, the heat flux in radial

direction is equal to �q00.

The value of the temperature in one point of the section

is also required.

Due to the complexity of the problem, Eqs. (1), (2)

and (4) can be integrated numerically. As in Ref. [13], by

adequately locating some nodes, the portion of the

cross-section of the finned tube can be subdivided in an

array of elements delimited by two concentric arches and

two segments (Fig. 1b). In the center of the tube an

element with the form of a circle sector can be located,

supposing that in this element changes in the coolant

velocity and temperature are negligible.

Let the velocity vector, the temperature, and the

viscous dissipation function in each element of

the coolant be approximated by an interpolation of the

values which they assume in the four nodes of the ele-

ment:

uðr; hÞ ¼
X
i

Niðr; hÞui ð5Þ
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tðr; hÞ ¼
X
i

Niðr; hÞti ð6Þ

dðr; hÞ ¼
X
i

Niðr; hÞdi ð7Þ

Nðr; hÞi being form factors:

Niðr; hÞ ¼
ln r � ln rjðiÞ
ln ri � ln rjðiÞ

h � hkðiÞ

hi � hkðiÞ
ð8Þ

and ri, rj, hi, hk being node coordinates.

Let us subdivide each element in four subelements by

joining the middle points of the opposite sides. By

integrating Eq. (1) on the four subelements surrounding

each node where the velocity is unknown and Eq. (2) or

(4) where the temperature is unknown, the following

systems of equations are obtained:

A � U ¼ B ð9Þ

C � T ¼ D ð10Þ

where the known vectors B and D are:

B ¼ 1

l
dp
dz

S ð11Þ

D ¼ 1

kc
qcp

ot
oz

E � U
�

� q00L� E � D

�
� CknTkn ð12Þ

In Eqs. (9)–(12) vector U and T contain the values of the

velocity and temperature, respectively, in the nodes

where they are unknown, vector Tkn the value of the

temperature in the node where it is known, vector S
the total area of the four subelements surrounding the

nodes, vector L the total perimeter of the four subele-

ments surrounding the nodes crossed by q00, vector D the

values of the viscous dissipation function, and E is a

surface integration matrix. Notice that, to correctly

integrate Eqs. (2) and (4) on the four subelements sur-

rounding a node located on the contact surface between

fluid and solid, the boundary condition of the same heat

flux in the fluid and the solid in the direction normal to

the contact surface must be taken into account. Such a

condition requires the thermal conductivity of the solid

to be considered with respect to that of the fluid.

Therefore, some of the elements of matrix C also depend

on the ratio c between the thermal conductivity of the

solid and the fluid.

Since properties are uniform and independent of the

temperature, system (9) can be solved separately. After

solution of system (9), the discrete distribution of the

velocity is obtained and the convective and dissipative

terms of Eq. (12) can be calculated. Since the derivative

of the temperature in the z-direction is still unknown,

Eqs. (2) and (4) must be integrated on the whole por-

tion of the tube cross-section Sp, including the finned

wall:
qcp
ot
oz

Z
Sp

uds ¼ ðRþ sÞbq00 þ
Z
Sp

dds ð13Þ

Referring to the discrete distribution of the velocity, the

partial derivative of the temperature in the z-direction
then results:

ot
oz

¼
ðRþ sÞbq00 þ

P
i

P
j eijdj

qcp
P

i

P
j eijuj

ð14Þ

where eij are the elements of matrix E and the summa-

tion indices i and j are extended to all the nodes of the

coolant. Vector D can now be written as follows:

D ¼ 1

kc

ðRþ sÞbq00 þ
P

i

P
j eijdjP

i

P
j eijuj

E � U
"

� q00L� E � D

#
� CknTkn ð15Þ

After solution of system (10) the discrete distribution of

the temperature is obtained as a function of Tkn.
We can now calculate some parameters in order to

evaluate the heat transfer performance of the finned

tube. The bulk temperature, a global heat transfer

coefficient, and the equivalent Nusselt number can be

calculated as in Ref. [13]:

Tb ¼
P

i

P
j eijujtjP

i

P
j eijuj

ð16Þ

h ¼ q00

Tmax � Tb
ð17Þ

Nue ¼
h2ðRþ sÞ

kc
ð18Þ

where the summation indices i and j are extended to all

the nodes of the coolant and Tmax is the maximum

temperature on the external tube wall surface.

The global heat transfer coefficient is calculated by

referring to the maximum temperature of the surface on

which the heat flux is imposed. In many practical

applications, in fact, the heat transfer is limited by the

maximum temperature which the materials of the cooled

system can support. This is the case of the cooling of an

electronic device whose external case temperature can-

not exceed the limit prescribed by the producer, or the

case of the heat removing from a nuclear fuel rod whose

cladding cannot exceed the melding temperature. In

these application, the cooling system performing the best

is that which is able to remove the highest heat flux for a

given drop between the maximum surface temperature

and bulk temperature.

The equivalent Nusselt number is calculated referring

to the external radius. In this way, it represents the

Nusselt number which would be calculated if the same

heat flux dissipated by the finned tube were transferred,
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under all other conditions, through an unfinned tube

having a wall with ideally null thickness and the same

external dimension of the finned tube. In many practical

applications, in fact, the space which is available for the

cooling system is limited and, in particular, the tube

performing the best is that which is able to remove the

highest heat flux for a given external radius.

The normalized hydraulic resistance 1, moreover, can

be calculated as the ratio between the hydraulic resis-

tance of the finned tube and that of an unfinned tube

with the same internal radius:

1 ¼ b
2p

ð�dp=dzÞP
j eijuj

,
8l
pR4

: ð19Þ

Since the system is linear referring to the temperature,

an arbitrary value can finally be assigned to Tkn in order

to calculate the global heat transfer coefficient and the

equivalent Nusselt number of the finned tube.
i¼0
3. Results

In order to investigate the effect of viscous dissipation

on the optimum geometry of an internally finned cylin-

drical tube, the above described mathematical model has

been used in the same genetic algorithm of Ref. [13].

Referring to the following dimensionless variable:

a ¼ a
R
; g ¼ r

R
; r ¼ s

R
; /ðgÞ ¼ f ðgRÞ ð20Þ

a polynomial form has been assigned to the profile

function /:
Fig. 2. Finned tube geometries which maximize Nue when a is equal to

is considered (a) and neglected (b).
/ðgÞ ¼
Xn

i¼0

wig
i ð21Þ

As fin profile describing parameters the values of / in

nþ 1 equidistant points on the g-axis has been chosen:

/i ¼ / 1

�
� i
n

a

�
8 i ¼ 0; 1; . . . ; n ð22Þ

The genetic algorithm has been used to find the combi-

nation of parameters a, b, r and /i which allow the

maximum Nue to be obtained respecting some con-

straining conditions and in correspondence with differ-

ent intensities of viscous dissipation.

To ensure the structural integrity of the finned tube, r
has been imposed to be no less than 0.05 and /ðgÞ to be

no less than 0:05b. Moreover, to ensure a uniform dis-

tribution of the fluid into the channels between the fins,

/ðgÞ has been imposed to be no greater than 0:95b.
Finally, a has been constrained to an established value

(0.8), since the genetic algorithm tried to extend the

height of the fins as much as possible in order to create

separated narrow channels.

To constrain the volume and the weight of the tube

wall, the average wall thickness r has been considered:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ rÞ2 þ n

b

s
� 1 ð23Þ

n being the area of the fin cross-section:

n ¼ 2
Xn

wið/0; . . . ;/nÞ
1� ð1� aÞiþ2

iþ 2
ð24Þ
0.8, b to p=4 and c to 500, when the effect of viscous dissipation



Table 1

Characteristic parameters of some optimum finned tube geometries (cases are listed in the same order they are discussed in the text)

c n Bre r r /0 /1 /2 /3 /4 Nue 1 Figure

500 0 0.1 0.375 0.09 0.5756 – – – – 7.054 88.88 2

500 0 1 0.564 0.548 0.0412 – – – – 0.959 5.16 2

500 0 10 0.362 0.344 0.0394 – – – – 0.101 5.14 2

500 2 0.1 0.349 0.074 0.6082 0.5382 0.3097 – – 8.55 62.67 2

500 2 1 0.333 0.071 0.6114 0.4994 0.2277 – – 1.146 45.15 2

500 2 10 0.397 0.154 0.6186 0.4858 0.2027 – – 0.119 41 2

500 4 0.1 0.331 0.052 0.6825 0.5806 0.5826 0.387 0.4379 8.97 67.81 2

500 4 1 0.326 0.06 0.7085 0.5515 0.5354 0.372 0.2445 1.184 46.79 2

500 4 10 0.324 0.073 0.6958 0.5276 0.4926 0.3405 0.1497 0.123 34.93 2

500 0 0.1 0.1 0.05 0.0879 – – – – 6.475 5.93 6

500 0 1 0.1 0.078 0.0393 – – – – 0.958 5.13 6

500 0 10 0.1 0.078 0.0393 – – – – 0.101 5.13 6

500 2 0.1 0.1 0.05 0.1621 0.0606 0.0427 – – 6.548 5.56 6

500 2 1 0.1 0.05 0.1678 0.0576 0.047 – – 0.986 5.55 6

500 2 10 0.1 0.05 0.1706 0.0565 0.0493 – – 0.104 5.55 6

500 4 0.1 0.1 0.05 0.2851 0.0424 0.0768 0.0821 0.0396 6.645 5.67 6

500 4 1 0.1 0.05 0.3107 0.0627 0.0425 0.0462 0.0425 1.005 5.43 6

500 4 10 0.1 0.05 0.3034 0.0645 0.0426 0.0472 0.0406 0.106 5.44 6

500 0 0.1 0.2 0.126 0.14 – – – – 6.528 7.02 7

500 0 1 0.2 0.179 0.041 – – – – 0.959 5.16 7

500 0 10 0.2 0.18 0.0393 – – – – 0.101 5.13 7

500 2 0.1 0.2 0.05 0.3812 0.252 0.0394 – – 6.986 10.21 7

500 2 1 0.2 0.05 0.582 0.1682 0.0401 – – 1.065 9.16 7

500 2 10 0.2 0.05 0.5935 0.1634 0.0409 – – 0.113 9.13 7

500 4 0.1 0.2 0.05 0.3619 0.2053 0.5282 0.2377 0.1877 7.599 19.3 7

500 4 1 0.2 0.05 0.6051 0.3046 0.2016 0.1037 0.0403 1.069 9.31 7

500 4 10 0.2 0.05 0.6026 0.3131 0.1973 0.0929 0.0438 0.113 9.28 7

500 0 0.1 0.3 0.053 0.4806 – – – – 6.727 37.84 8

500 0 1 0.3 0.28 0.0412 – – – – 0.959 5.16 8

500 0 10 0.3 0.281 0.0393 – – – – 0.101 5.13 8

500 2 0.1 0.3 0.05 0.5137 0.4926 0.1673 – – 8.248 36.3 8

500 2 1 0.3 0.05 0.5956 0.4594 0.1537 – – 1.139 32.71 8

500 2 10 0.3 0.05 0.6009 0.4581 0.1474 – – 0.119 32.51 8

500 4 0.1 0.3 0.051 0.6018 0.5156 0.5771 0.2994 0.3613 8.768 44.47 8

500 4 1 0.3 0.051 0.6679 0.5149 0.5196 0.3133 0.2069 1.176 35.27 8

500 4 10 0.3 0.051 0.6782 0.5157 0.5026 0.321 0.1604 0.122 33.46 8

50 0 0.1 0.3 0.05 0.4806 – – – – 6.435 37.84 9

50 0 1 0.3 0.248 0.109 – – – – 0.93 6.34 9

50 0 10 0.3 0.268 0.0679 – – – – 0.099 5.58 9

50 2 0.1 0.3 0.05 0.5283 0.4855 0.1835 – – 7.642 35.84 9

50 2 1 0.3 0.05 0.6022 0.4571 0.1488 – – 1.124 32.42 9

50 2 10 0.3 0.05 0.6141 0.4523 0.1513 – – 0.118 32.1 9

50 4 0.1 0.3 0.051 0.5984 0.5045 0.5728 0.3266 0.3451 8.092 43.46 9

50 4 1 0.3 0.05 0.6778 0.5161 0.5139 0.3117 0.1878 1.159 34.52 9

50 4 10 0.3 0.051 0.6772 0.52 0.4944 0.3154 0.1592 0.122 32.83 9

500 2 0.1 0.299 0.091 0.4992 0.3986 0.0504 – – 7.696 19.98 10

500 2 1 0.285 0.066 0.5991 0.3776 0.0498 – – 1.121 19.99 10

500 2 10 0.287 0.067 0.6152 0.3743 0.0472 – – 0.118 19.99 10

500 4 0.1 0.266 0.066 0.5887 0.3854 0.4719 0.2386 0.0855 7.995 19.97 10

500 4 1 0.277 0.059 0.6824 0.4487 0.4198 0.2382 0.0523 1.146 19.96 10

500 4 10 0.283 0.065 0.6865 0.4656 0.4074 0.2314 0.0479 0.12 19.99 10

500 2 0.1 0.335 0.085 0.5497 0.497 0.198 – – 8.344 39.92 10

500 2 1 0.377 0.131 0.6082 0.4852 0.1923 – – 1.145 39.92 10

500 2 10 0.347 0.094 0.62 0.4809 0.2022 – – 0.119 39.86 10

500 4 0.1 0.304 0.054 0.6586 0.5083 0.551 0.3153 0.2875 8.719 39.81 10

500 4 1 0.311 0.053 0.6905 0.5325 0.5214 0.342 0.2255 1.183 39.65 10

500 4 10 0.312 0.054 0.6968 0.5355 0.5166 0.3405 0.2039 0.123 39.03 10
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Fig. 3. Velocity distributions in the cross-section of the geometries of Fig. 2. Curves are drawn every 10% of the maximum velocity.
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To consider different effects of viscous dissipation, an

equivalent Brinkman number has been introduced:

Bre ¼
lu

2ðRþ sÞq00 ð25Þ

where u is the average velocity. Such a parameter cor-

responds to the Brinkman number which would be cal-

culated if the same coolant fluid flowed in a finnless tube

with a zero wall thickness and radius equal to Rþ s. For
the equivalent Brinkman number values ranging from

0.1 to 10 have been considered. In an optimized finned

tube such as those obtained in Ref. [13], with an external

radius equal to 0.01 m and an hydraulic diameter equal

to 0.005 m, where a light oil flows at a Reynold number

close to 2000, the equivalent Brinkman number is equal

to 10 only when either the coolant temperature is

moderate (15 �C for q00 equal to 15 W/m2) or the

transferred heat flux is low (q00 equal to 1 W/m2 for Tb
equal to 40 �C). Therefore, such a value of the equiva-

lent Brinkman number can be considered as a limit for

heat transfer problems of practical interest.

To the finite element model a grid of 16· 52 elements

(17· 53 nodes) has been employed. More closed grids

have been tested without finding any significant varia-

tion in Nue. In the testing cases, a grid of 20 · 52 ele-

ments produced alterations in Nue of less than 0.4%, and

a grid of 16 · 65 elements caused changes of less than
0.2%. In the limit case of a equal to 0, the velocity and

the temperature distributions obtainable with the model

with the selected grid are in good agreement with the

analytical one-dimensional solution and the numerical

error on Nue is equal to 0.06%.

In the genetic algorithm populations of 20 samples

and a selection percentage equal to 20 were established.

During parameter reproduction, uniformly distributed

between )10% and +10% random errors were intro-

duced. The genetic algorithm was stopped after 50

generations from that time in which an improvement

was no longer observed. As prototypes, finned tubes

having r equal to 0.1 and /i equal to b=2 were em-

ployed.

3.1. Optimization without constraints

In Fig. 2a some finned tube geometries which maxi-

mize Nue are shown for n equal to 0, 2 and 4, b equal to

p=4 and c equal to 500 in correspondence of three values

of Bre. The same conditions of the analysis neglecting

viscous dissipation [13] have been imposed. Moreover,

the range of Bre corresponds to situations of practical

interest for heat removing systems. The describing

parameters of the optimum geometries are reported in

Table 1 together with the average finned tube thickness,

the equivalent Nusselt number, and the normalized
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hydraulic resistance. The table also contains the char-

acteristic parameters of the optimum geometries which

will be discussed in the following.

Fig. 2b shows the optimum finned tube geometries

obtained in Ref. [13] under the same conditions of Fig. 2a

by neglecting viscous dissipation. Comparing Fig. 2a

with Fig. 2b, it is possible to observe that the effect of

viscous dissipation noticeably modifies the optimum

second and fourth order geometries, even when the

equivalent Brinkman number is low (Bre ¼ 0:1). In par-

ticular, the optimum geometries obtained by taking vis-

cous dissipation into account have fins with a flatter

lateral profile, which induces lower velocity gradients and

viscous dissipative phenomena. Moreover, by increasing

Bre, for every profile polynomial order, the channel cross-

section becomes wider. This is particularly evident in case

of zero order polynomial profiles.

The heat transfer effectiveness of the finned tubes is in

fact improved by an increment in the convection coef-

ficient. Such a parameter can be increased by narrowing

the channel cross-section and inducing higher velocity

and temperature gradient near the fin surface. When the

viscosity or the velocity is high, or the imposed heat flux

is low (Bre is high) the viscous dissipative effect induced

by high velocity gradients prevails on the influence of a
high convection coefficient, resulting in a reduction of

the heat transfer effectiveness of the finned tube. In this

cases, the optimum geometries have a wider channel

cross-section, which produces lower velocity and tem-

perature gradients (Figs. 3 and 4).

Such a phenomenon can be better understood by

observing the dependence of a simple fin profile tube

geometry on the channel width in correspondence with

different value of Bre. In Fig. 5 the equivalent Nusselt

number of a zero order fin profile tube geometry with an

unfinned wall thickness constrained to 0.05 times the

internal radius, under the same conditions of Fig. 2, is

reported as a function of the profile angle (/0) in corre-

spondence with three values of Bre. When Bre is equal to
0.1, the maximum in Nue comes from a compromise be-

tween the exigence of narrowing the channels between

the fins in order to increase velocity and temperature

gradients (to increase the convection coefficient) and that

of enlarging the channels in order to make the velocity

and temperature more uniform (to reduce the drop be-

tween the external surface and bulk temperature). When

Bre is higher, the effect of viscous dissipation increases

and just a local maximum in Nue occurs in correspon-

dence with that compromise. For this reason the thick-

ness of zero order polynomial profile fins of Fig. 2 falls to
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very low values when Bre is equal to 1 or 10. It must be

noticed that in these cases, since the fin base is thin, the

conductance of the tube wall is increased by enlarging the

wall thickness. Such a phenomenon is less evident when

Bre is equal to 10, since the contribution of the heat flux

imposed on the wall is less significant.

Referring to the optimum geometries of Fig. 2, it is

important to observe that the effect of viscous dissipa-

tion, in general, reduces the equivalent Nusselt number

and the improvements in the heat transfer of higher

order polynomial profile fins. In particular, fourth order

profile fins do not perform much better than second

order ones. However, referring to the equivalent Nusselt

number of zero order profile fins, increments from 18%

to 21% are obtainable with second order profiles, and

increments from 23% to 26% with fourth order profiles.

3.2. Constrained solid volume

It is also interesting to investigate how the effect of

viscous dissipation modifies the optimum geometries
when the available solid volume is limited. In Figs. 6–8

the geometries which maximize Nue when n is equal 0, 2,

and 4 and r is equal to 0.1, 0.2, and 0.3 in correspon-

dence with three values of Bre are shown. It is evident

that the effect of viscous dissipation produces flatter

fins and larger channels in the optimum geometries

even when the solid volume of the finned tube is con-

strained. In particular, when the average wall thickness

is constrained to 0.2, viscous dissipation produces large

changes in the optimum geometries having fourth order

profile fins. As a consequence, when Bre is equal to 1 and

10, fourth order profile geometries are very similar to the

second order ones, allowing very small improvements in

Nue.
It must be noticed that the equivalent Nusselt num-

ber of zero order profile optimum geometries for a high

value (1 or 10) of Bre does not significantly change with

the available solid volume, and, in particular, with the

wall thickness. Since, on the contrary, the heat transfer

effectiveness of higher order profile optimum geometries

decrease with the available solid volume, the improve-

ments in Nue provided by such geometries are very small

when r is low.

3.3. Reduced thermal conductivity in the solid

In Fig. 9 the optimum geometries obtained for n
equal to 0, 2 and 4, r constrained to 0.3 and c equal to

50 are shown. It can be observed that these geometries

are very similar to those obtained under the same con-

ditions by assigning to c a value which is higher for a

magnitude order. Only in the situations where fins are

very thin the reduction of the ratio between the thermal

conductivity of the solid and that of the fluid produces

evident differences.

3.4. Constrained hydraulic resistance

Lastly, it is interesting to investigate how the effect of

viscous dissipation modifies the optimum geometries

when the hydraulic resistance of the finned duct is lim-

ited. In Fig. 10 the geometries which maximize Nue when
n is equal to 2 and 4 and 1 is constrained to be no higher

than 20 and 40 in correspondence with three values of

Bre are shown. Even in this case, a stronger effect of

viscous dissipation causes flatter fin profile in the opti-

mum geometries. However, since the constraint on 1
requires larger channels the effect of viscous dissipation

produces less noticeable modifications in the optimum

geometries.
4. Conclusions

The results obtained demonstrate that the effect of

viscous dissipation noticeably modifies the optimum
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geometry of a finned tube. The following conclusions are

to be considered:

1. The finned tube geometries which provide the best

heat transfer performance in presence of stronger ef-
fects of viscous dissipation have flatter fin profiles

and wider channels between the fins than in case vis-

cous dissipation is low.

2. The effect of viscous dissipation reduces the heat

transfer effectiveness of the finned tube and the
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improvements provided by geometries having higher

order polynomial profile fin.
3. The effect of viscous dissipation causes evident

changes in the optimum geometries and reductions
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in the heat transfer effectiveness even when the avail-

able solid volume is constrained.

4. When the hydraulic resistance is constrained, the dif-

ferences between the optimum geometries obtained

under different conditions of viscous dissipation are

more limited.

It must be noticed that some parameters which

determine the effect of viscous dissipation, under certain

conditions, depend on the finned tube geometry. This is

for example the case of the average coolant velocity,

which depends on the finned tube cross-sectional area

when the coolant flow rate is established or determined

by constraints on the pressure drop and hydraulic

resistance. Therefore, in some practical applications, it

could be necessary to search the optimum finned tube

geometry by considering more complex relationships

between the parameters of the problem and more con-

ditioning constraints than in the present analysis.

The present investigation has been limited to the case

of laminar flow. Since the presence of eddies increases
the apparent viscosity, in the case of turbulent flow the

optimum finned tube geometries are expected to have

even more flatter fin profiles and wider channels between

the fins.
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